ESTIMATES OF $||e^{i\tau f}||_{A(\Gamma)}$, WHEN $\Gamma \subset \mathbb{R}^n$ IS A CURVE AND f IS A REAL-VALUED FUNCTION

by YNGVE DOMAR

ABSTRACT

 Γ is a simple curve in \mathbb{R}^n with an equation $x = \gamma(u)$, $u \in [0, 1]$, $\gamma \in C^k$, where for some $k, 2 \le k - 1 \le n, \gamma'(u), \gamma''(u), ..., \gamma^{k-1}$ (u) are linearly independent for every u. It is then proved that if $t \in \mathbb{R}$ and f is a real-valued function in $C^k(\Gamma)$, $t^{-1/k} \|e^{itf}\|_{A(\Gamma)}$ is bounded as $|t| \to \infty$. An example shows that the estimate cannot be improved in general, when n = 2, k = 3. The result is interpreted in terms of properties of the space of pseudomeasures on Γ .

For every complex-valued function g on the closed set $E \subset \mathbb{R}^n$, A_g is the set of functions $h \in A(\mathbb{R}^n) = \mathcal{F}L^1(\mathbb{R}^n)$, which coincide with g when restricted to E. A(E) is the space of all g with non-empty A_g , and for $g \in A(E)$, we put

$$\|g\|_{A(E)} = \inf_{h \in A_g} \|h\|_{A(\mathbb{R}^n)}.$$

In an analogous way we introduce B(E) and $\|g\|_{B(E)}$, using instead af $A(\mathbb{R}^n)$ the larger space $B(\mathbb{R}^n) = \mathscr{F}M(\mathbb{R}^n)$. $g \in A(E)$ implies that $g \in B(E)$ and $\|g\|_{A(E)} = \|g\|_{B(E)}$ (cf. Shapiro [5], p. 121).

Let Γ be a compact interval in \mathbb{R} and f a real-valued function in $C^1(\Gamma)$. It is then a well-known and easy consequence of an inequality of Carlson [2] that $e^{itf} \in A(\Gamma)$ for every $t \in \mathbb{R}$, and that for some constant K

(1)
$$\|e^{itf}\|_{A(\Gamma)} \le K(1+|t|)^{\frac{1}{2}}, \quad t \in \mathbb{R}.$$

If $f \in C^2(\Gamma)$ is not a linear function on Γ , the estimate (1) is sharp in the sense that

(2)
$$\|e^{itf}\|_{A(\Gamma)} \ge K'(1+|t|)^{\frac{1}{2}}, \quad t \in \mathbb{R},$$

Received December 16, 1971

for some positive constant K' (Leibenson [4]).

Our aim is to find corresponding estimates in the case when Γ is a curve in \mathbb{R}^n $n \geq 2$. Applying the one-dimensional result, it is easy to prove that (1) holds as well if $f \in C^1(\Gamma)$ and Γ is a simple C^1 curve of finite length. The case when Γ is a line segment is of course equivalent to the one-dimensional case, hence (1) can not be improved in general. The following theorem shows however, that we can lower the exponent in (1), if we assume higher differentiability of f and Γ and if we impose conditions which prevent Γ from being too degenerated.

THEOREM 1. Let $2 \le k-1 \le n$ and let $\Gamma \subset \mathbb{R}^n$ be a simple curve with equation $x = \gamma(u)$, $u \in [0,1]$, $\gamma \in C^k$, where $\gamma'(u)$, $\gamma''(u)$, \cdots , $\gamma^{(k-1)}(u)$ are linearly independent for every $u \in [0,1]$. Then there exists, for every real-valued $f \in C^k(\Gamma)$, a constant K such that

(3)
$$\|e^{itf}\|_{A(\Gamma)} \le K(1+|t|)^{1/k}, \quad t \in \mathbb{R}.$$

Proof. Using a partitioning of the unit we find by a standard procedure that it is sufficient if we can, for every $x \in \Gamma$, prove the theorem with Γ replaced by a suitably chosen closed neighborhood of x with respect to Γ , and with f restricted to that neighborhood. Hence, after a change of parameter and coordinates, we can conclude that it suffices to prove the theorem in the case when $\gamma_1(u) = u$ for every $u \in [0,1]$ and when the determinant $|\gamma_i^{(J)}(u)|$, $1 \le i \le k-1$, $1 \le j \le k-1$, does not vanish on [0,1]. Here γ_i denotes for every i, $1 \le i \le n$, the i-th component of γ .

Assuming this we extend γ to a slightly larger interval $[-\varepsilon, 1+\varepsilon]$, $\varepsilon > 0$, so that all properties mentioned hold in this interval as well. This is of course possible, and it suffices to prove (2) in the case when $m = [t^{1/k}] \ge 2/\varepsilon$. A continuous function ϕ_m on $\mathbb R$ is defined by the conditions

$$\phi_m = \begin{cases} 1 \text{ on } [0, 1/2m] \\ 0 \text{ on }] - \infty, -1/2m] \cup [1/m, \infty[\\ \text{linear on each of the two remaining intervals.} \end{cases}$$

For every $p, 0 \leq p \leq m, \phi_{m,p}$ denotes the function on \mathbb{R} with values

$$\phi_{m,p}(x_1) = \phi_m(x_1 - p/m), \qquad x_1 \in \mathbb{R}.$$

Obviously,

(4)
$$\sum_{p=0}^{m} \phi_{m,p}(x_1) = 1,$$

when $x_1 \in [0, 1]$.

 ψ_p denotes for $0 \le p \le m$ the function or \mathbb{R} with values

$$\psi_{p}(x_{1}) = \phi_{m,p}(x_{1}) \exp it\{f \circ \gamma(x_{1}) - \sum_{l=1}^{k-1} a_{p,l} \gamma_{l}(x_{1})\}, \qquad x_{1} \in \mathbb{R},$$

where $a_{p,i}$ are real constants to be chosen later, and where the value is defined as 0 whenever the first factor vanishes even if the second factor is not defined. Let us now form the function g on \mathbb{R}^n with values

$$g(x) = \sum_{p=0}^{m} \psi_p(x_1) \exp it(\sum_{l=1}^{k-1} a_{p,l} x_l), \qquad x \in \mathbb{R}^n.$$

Due to (4), the restriction of g to Γ is e^{itf} . Hence

$$\|e^{itf}\|_{A(\Gamma)} = \|e^{itf}\|_{B(\Gamma)} \le \|g\|_{B(\mathbb{R}^n)} \le \sum_{p=0}^m \|\psi_p\|_{A(\mathbb{R})}$$

by well-known properties of Fourier-Stieltjes transforms. Hence (3) is proved if we can show that, for every m and p, the numbers $a_{p,l}$ can be chosen so that $\|\psi_p\|_{A(\mathbb{R})}$ has a bound, uniform in m and p.

Carlson's inequality, valid for a class of complex-valued functions ψ on $\mathbb R$ containing our functions ψ_a has the form

$$\|\psi\|_{A(\mathbb{R})}^2 \le C \|\psi\|_{L^2} \|\psi'\|_{L^2}$$
,

where C is a constant. Hence we obtain

$$\|\psi_p\|_{A(\mathbb{R})}^2 \le C \cdot \frac{3}{2m} \cdot \sup |\psi_p| \cdot \sup |\psi_p'|$$

$$\le C \cdot \frac{3}{2m} (\sup |\phi'_{m,p}| + \sup_{\lfloor (2p-1)/m \cdot (p+1/m) \rfloor} |t| |(f \circ \gamma)' - \sum_{l=1}^{k-1} a_{p,l} \gamma'_l|).$$

By the assumption on the determinant $|\gamma_l^{(j)}|$, we can choose $a_{p,l}$ so that the function $f \circ \gamma - \sum_{l=1}^{k-1} a_{p,l} \gamma_l$ has vanishing derivatives of orders $1, 2, \dots, k-1$ for $x_1 = p/m$. The values of $a_{p,l}$ are then uniformly bounded in m and p, and hence Taylor's formula shows that the second term within the parenthesis is bounded by $C|t|m^{-(k-1)} \leq C_1 m$, for constants C and C_1 , independent of m and p. Since $|\phi'_{m,p}| \leq 2m$, $||\psi_p||_{A(\mathbb{R})}$ is bounded and the theorem is proved.

The following theorem gives an example of a case where Theorem 1 is the best possible.

THEOREM 2. If $\Gamma \subset \mathbb{R}^2$ is an arc of a circle and f is real-valued and linear with respect to the arc length, there exists a positive constant K', such that

$$\|e^{itf}\|_{A(\Gamma)} \ge K'(1+|t|)^{\frac{1}{3}}, \qquad t \in \mathbb{R}.$$

PROOF. We shall prove that if S^1 is the unit circle in the z-plane and if $g(z) = g(re^{i\theta}) = e^{i\theta}$, when r = 1, then

(5)
$$\|g^m\|_{A(S^1)} = \sup_{x \in \mathbb{R}} |J_m(x)|^{-1},$$

for every $m \in \mathbb{Z}$. Now, the value of the right hand member is $\geq Cm^{\frac{1}{3}}$, for some positive constant C and $m \neq 0$. It is difficult to find a convenient reference in the huge literature on the asymptotic behavior of Bessel functions, but the fact is easily established by estimating

$$2\pi J_m(x) = \int_{-\pi}^{\pi} e^{i(xs:n\phi-m\phi)} d\phi, \qquad x \in \mathbb{R},$$

by elementary methods. The theorem follows then from (5) by a partitioning of the unit.

To prove (5) we first observe that there exists a $h_m \in B(\mathbb{R}^2)$ such that its restriction to S^1 is g^m , and such that

$$||h_m||_{B(\mathbb{R}^2)} = ||g^m||_{B(S^1)} = ||g^m||_{A(S^1)}.$$

The main idea behind the proof of this stems from Beurling [1]: for a full discussion of the details, see Shapiro [5], p. 120-121. We call such a function h_m a minimal extrapolation of g^m . Denoting by T_{ϕ} , $\phi \in \mathbb{T}$, the transformation

$$(T_{\phi}g)(z) = e^{im\theta} g(ze^{-i\theta}),$$

defined for all complex-valued functions g on $\mathbb{R}^2 = \mathbb{Z}$, we find that $T_{\phi}h_m$ is a minimal extrapolation of g^m , and the same must then hold for the function k_m , defined by

$$k_m(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} T_{\varphi} g(re^{i\theta}) d\phi.$$

Then $T_{\phi}k_m = k_m$, for every $\phi \in \mathbb{T}$. But this implies that the measure μ_m with the Fourier-Stieltjes transform k_m has to be of the form

(6)
$$d\mu_m = e^{im\psi} d\psi dv(r),$$

where (r, ψ) are polar coordinates in the dual \mathbb{R}^2 . Since k_m is a minimal extrapolation of g^m we have

(7)
$$\|g^m\|_{A(S^1)} = \|k_m\|_{B(\mathbb{R}^2)} = 2\pi \int_0^\infty |dv(r)|,$$

and

(8)
$$1 = k_m(1) = \int_0^\infty \left(\int_{-\pi}^{\pi} e^{im\psi - ircos\psi} d\psi \right) d\nu(r) \le \int_0^\infty \left| 2\pi J_m(r) \right| \left| d\nu(r) \right|.$$

(7) and (8) show that

$$||g^m||_{A(S^1)} \ge (\sup_{x \in \mathbb{R}} |J_m(x)|)^{-1}.$$

Here equality is attained as is shown by forming the Fourier-Stieltjes transform of a measure μ_m of the form (6) with ν chosen as a suitable point measure at the point $r = r_0$, where $|J_m(r)|$ attains its maximal value.

REMARK. Theorem 1 can be used to give information on the properties of pseudomeasures supported by curves Γ satisfying the condition of the theorem. A pseudomeasure is by definition an element of $PM(\mathbb{R}^n) = \mathscr{F}L^{\infty}(\mathbb{R}^n)$ and hence it is a distribution in $\mathscr{D}'(\mathbb{R}^n)$. If $\mu \in PM(\mathbb{R}^n)$ has its support included in Γ , we can also interpret μ as an element ν of the dual of $C^1(\Gamma)$ in the sense that

$$\langle v, h \rangle = \langle \mu, g \rangle$$

for every $h \in C^1(\Gamma)$ and every $g \in C^1(\Gamma) \cap A(\mathbb{R}^2)$ with h as restriction to Γ . We refer to [3] for a brief motivation when n = 2; the case n > 2 is quite analogous.

The function f in Theorem 1 maps Γ into \mathbb{R} , $\phi \rightarrow \phi \circ f$ maps $C^1(\mathbb{R})$ into $C^1(\Gamma)$ and the adjoint mapping maps ν into a distribution σ on \mathbb{R} , contained in the dual of $C^1(\mathbb{R})$. Now

$$\langle v, e^{itf} \rangle = \langle \sigma, \chi_t \rangle, \quad t \in \mathbb{R},$$

where $\chi_i(x) = e^{itx}$, $x \in \mathbb{R}$, and since the extrapolations g constructed in the proof of Theorem 1 belong to C^1 , we find that

(9)
$$\left| \langle \sigma, \chi_t \rangle \right| = \left| \langle \mu, g \rangle \right| \leq \|\mu\|_{PM(\mathbb{R}^n)} \cdot K(1 + |t|)^{1/k}, \qquad t \in \mathbb{R},$$

which gives an estimate of the Fourier transform of σ . It follows from (1) that the corresponding result is true with k=2 for mappings of one-dimensional pseudo-

measures, but (2) and the closed graph theorem show that in this case the exponent cannot be lowered in general. Hence (9) shows that pseudomeasures on curves of this type exhibit a kind of stability for highly differentiable mappings, which is not usually found in the space of one-dimensional pseudomeasures.

REFERENCES

- 1. A. Beurling, Sur les intégrales de Fourier absolumentes convergentes et leur application à une transformation fonctionelle, Neuvième congrès des mathématiciens scandinaves, Helsinki, 1938.
 - 2. F. Carlson, Une inégalité, Ark. Mat. Astronom. Fys., 25, B1, 1934.
- 3. Y. Domar, Sur la synthèse harmonique des courbes de \mathbb{R}^2 , C. R. Acad. Sci. Paris 270 (1970), 875-878.
- 4. Z. L. Leibenson, On the ring of functions with absolutely convergent Fourier series, Uspehi Matem. Nauk. (N.S.) 9 (61) (1954), 157-162.
 - 5. H. S. Shapiro, Topics in approximation theory, Springer Lecture Notes 187, 1971.

University of Uppsala, Sweden